Category Archives: bispecific

Format of bispecific antibodies (BsAbs)-Tandem scFv

A tandem scFv links two or more scFvs with the helical peptide linkers in the orientation NH2–VL1–VH1–(linker–VL2–VH2)n–COOH, resulting in a single chain bivalent and bi-specific molecule encoded by a single gene (Figure 2). Tandem scFv can be used to target two different antigens on two different cells, two different antigens on the same cell, or […]

Format of bispecific antibodies (BsAbs)-Tandem VHH

Since 1975, monoclonal antibodies have been successfully used for the diagnosis and therapeutics. In 1993, heavy-chain-only antibodies which bind to antigens was discovered in camelids. The variable domain of heavy chain antibody (VHH) was called as nanobodies and it was anticipated as the better therapeutic antibodies in future due to its high stability, refoldability, and manipulable characteristics. […]

Format of bispecific antibodies (BsAbs)-VL1-CL1-VH2-CH2-Fc x VH1-CH1 x VL2-CL2

Tetravalent Fabs-In-Tandem immunoglobulins (FIT-Ig™) technology combines Fab fragments of any 2 parental mAbs create a tetravalent, dual-targeting single molecular entity, where the FabA is structurally fused to FabB in tandem at its N-terminus (Fig. 1a). A unique crisscross orientation of 2 sets of VH-CH1 and VL-CL evades any mispairing problem between two short chains and long chain. FIT-Ig have […]

Format of bispecific antibodies (BsAbs)-VH1-VH2-CH1-Fc1(G1) x VL2-VL1-CL-Fc2(G1)

CODV (cross-over dual variable domains) -Ig, contain four polypeptide chains that form two dual variable domains (four antigen binding sites) with a cross-over orientation (Figure 1), which is attained by inverting the alignment of the cognate domains on one chain. In order to adopt the correct VH/VL pairing, linker combinations were designed and optimized using […]

Format of bispecific antibodies (BsAbs)-scFv-Fab IgG

The XmAb enables alterations with desirable effects to the Fc domain of the antibodies. The modification increases affinity to the neonatal Fc receptor which prevents the antibody from degradation. Hence, this interaction extends the antibody’s halflife of this therapeutic drug. In order to construct the XmAb format an antibody heavy and light chain and a […]

Format of bispecific antibodies (BsAbs)-Hetero H, CrossMab

CrossMab technology enforces correct light chain association based on the domain crossover of immunoglobulin domains in the Fab region of the bispecific antibody. CrossMab technology allow the generation of various bispecific antibody formats, including bi- (1+1), tri- (2+1) and tetra-(2+2) valent bispecific antibodies, as well as non-Fc tandem antigen-binding fragment (Fab)-based antibodies. These formats may […]

Format of bispecific antibodies (BsAbs)-cH IgG1

cH IgG1 / κλ body involves the formation of in vitro display libraries with common heavy chains against two different antigens. κλ body share the same heavy chain but carry either κ or λ light chains. Three different chains (one heavy and two light) are then co-expressed in a single cell to generate a mixture containing two […]

Format of bispecific antibodies (BsAbs)-Hetero H, forced HL IgG1

Hetero H, forced HL IgG1/ DuetMab replaces the native disulfide bond in the CH1-CL interface with an engineered disulfide bond (fig. 1). This enhances cognate light chain pairing. Three different positions in the CH1-CL interface are possible candidates for favoring the formation of a novel disulfide bond. An amino acid on the HC and one […]

Format of bispecific antibodies (BsAbs)-Fc antigen binding site

The production of bispecific antibodies involves the addition of a second antigen-binding site in the Fab arms. Sometimes, these types of bispecific products have problems such as poor stability, immunogenicity and challenges in the manufacturing process. Hence, Mab2 simply replaces the Fc region of an existing antibody with an Fcab that binds to a second […]

Format of bispecific antibodies (BsAbs)-C-terminal linker of Fc

ADAPTIR-FLEX platform technologies can be used to produce monospecific, bispecific, and multispecific immunotherapeutic proteins. These protein candidates bind to one or more targets found on tumor cells, immune cells, or other cells in the body or circulation to either amplify, suppress, or regulate the body’s defense mechanisms to treat cancer and autoimmune diseases. ADAPTIR-FLEX molecules […]