CRISPR/Cas9?system?and Gene editing therapy

Gene editing, also called genome editing, is a group of technologies to change the sequence of DNA in the genome. Several approaches to genome editing have been developed, including Zinc Finger, TALEN, and CRISPR/Cas9. Compared with the other gene editing tools, CRISPR/Cas9 system is faster, cheaper, more accurate, and more efficient, showing unprecedented advantages in gene therapy.

CRISPR/Cas9 premade products

Filters Sort results
Reset Apply
Cat No.
Products Name
Type of Crispr
Viral vector
Promoter
Fluorescent/Resistance
Tag
Order
Ad-CMV-spCas9
spCas9
Adenovirus
CMV
zsgreen
FLAG
Adv-CMV-spCas9-zsgreen
spCas9
Adenovirus
CMV
EGFP
FLAG
Adv-CMV-spCas9-EGFP
spCas9
Adenovirus
CMV
Null
FLAG
Adv-CMV-spCas9-mcherry
spCas9
Adenovirus
CMV
mcherry
FLAG
spCas9
lentivirus
CMV
puromycin
FLAG
spCas9
lentivirus
CMV
zsgreen
FLAG
spCas9
lentivirus
CMV
EGFP
FLAG
spCas9
lentivirus
CMV
mcherry
FLAG
spCas9
lentivirus
CBH
puromycin
FLAG
spCas9
lentivirus
CBH
zsgreen
FLAG
1 2

1)Gene editing therapy vs gene replacement therapy

Gene therapy, to be brief, is delivering corrective gene materials into cells to treat or alleviate the symptom of disease [86], so far, including gene editing therapy mediated by CRISPR/Cas sytem, ZFN or TALEN etc., and gene replacement, such as lentivirus/adenovirus/AAV-mediated gene expression [20]. Gene editing therapy via CRISPR technology is to correct the pathogenic mutation into non-pathogenic ones, such as gene silence or disruption by CRISPR mediated knockout, which has been widely used in the therapy of hemophilia B [19], Huntington’s disease [87], Parkinson’s Disease [88], hematologic diseases, infectious diseases and malignant tumor [89]. Gene replacement therapy by lentivirus/adenovirus/AAV is to replace the pathogenic gene with its corrective type, which is widely applied in treating lipoprotein lipase deficiency (LPLD) [90], spinal muscular atrophy (SMA) [91], retinal dystrophy [92,93], cystic fibrosis [94,95] muscular dystrophies [96]. Combined CRISPR with virus vectors, AAV-SaCas9 or lentivirus-Cas9 has been used for gene therapy of Hemophilia A [61], Usher Syndrome [97], Intervertebral Disc Degeneration [98] etc.

Click here for Pipelines landscapes of gene replacement therapy and gene editing therapy of different companies..

2) Landscape of gene editing therapy: companies and pipelines

As a powerful and versatile platform, gene editing therapy has been led into a new era. Besides basic research, great progress has been made in the clinical studied based on CRISPR. Several companies have been operated to develop transformative genomic medicines for the treatment a range of genetically addressable diseases. Founded by Zhangfeng, Jennifer A. Doudna, George Church, J. Keith Joung and David R. Liu in 2013, Editas Medicine, Inc. develops several gene medicines for disease therapy, such as EDIT-101 for the treatment of Leber Congenital Amaurosis type 10, which has entered into the phase I/II dose escalation study. Founded in Swiss in 2013, CRISPR Therapeutics has developed gene medicine CTX001 for the therapy of anemia, showing promising data in the phase I/II clinical study. Operated by Zhangfeng, David R. Liu and J. Keith Joung in 2018, Beam Therapeutics focuses on treating genetic diseases caused by point mutations with CRISPR-mediated single base editing technique. 

Click here for Pipelines landscapes of gene replacement therapy and gene editing therapy of different companies..